The $${\square_{b}}$$ heat equation and multipliers via the wave equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Equation and Multipliers via the Wave Equation

Recently, Nagel and Stein studied the b-heat equation, where b is the Kohn Laplacian on the boundary of a weakly-pseudoconvex domain of finite type in C. They showed that the Schwartz kernel of e b satisfies good “off-diagonal” estimates, while that of e b −π satisfies good “on-diagonal” estimates, where π denotes the Szegö projection. We offer a simple proof of these results, which easily gene...

متن کامل

Remarks on Fourier Multipliers and Applications to the Wave Equation

Exploiting continuity properties of Fourier multipliers on modulation spaces and Wiener amalgam spaces, we study the Cauchy problem for the NLW equation. Local wellposedness for rough data in modulation spaces and Wiener amalgam spaces is shown. The results formulated in the framework of modulation spaces refine those in [3]. The same arguments may apply to obtain local wellposedness for the NL...

متن کامل

Poincaré-Lelong equation via the Hodge Laplace heat equation

In this paper, we develop new methods of solving the Poincaré-Lelong equation. It is mainly via the study of the large time asymptotics of a global solution to the Hodge-Laplace heat equation on (1, 1)-forms. The method is shown to be effective through obtaining better, sometimes optimal, existence results for the Poincaré-Lelong equation.

متن کامل

Numerical solution of the wave equation using shearlet frames

In this paper, using shearlet frames, we present a numerical  method  for solving  the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.

متن کامل

A Laplace Transform Certified Reduced Basis Method; Application to the Heat Equation and Wave Equation

We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2008

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-008-0443-1